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Abstract

The con_gurations of steady two!dimensional ~ow accompanied by heat and mass transport in a shallow lid!driven
cavity with a moving heated lid and a moving cooled lid were investigated numerically in a process engineering context
of drying[ A continuation method was applied to track the branches of the diagram of ~ow con_gurations in their
dependence on various parameters and to determine their linear stability by an Arnoldi!based method[ Analytical
solutions for limiting situations of the geometrical and ~ow parameters\ obtained by computer algebra\ were compared
with numerical results[ In a parameter study for horizontal and vertical orientation of the cavity\ the dependence of heat
and mass transfer rates on the velocities of the walls and on the species concentration boundary conditions was
investigated[ Among the results found\ for a vertical cavity\ there are two turning points and ~ow con_gurations with
minimal heat and mass transfer\ and for a horizontal cavity heated from below a Hopf bifurcation indicating inception
of oscillatory ~ow regimes[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

ai coe.cients in series expansion
C normalized concentration de_ned by equation "8#
D di}usion coe.cient
ex\ ey unit vectors
` gravitational acceleration
` gravity vector
Gr Grashof number de_ned by equation "5#
h heat transfer coe.cient
H cavity height
kv mass transfer coe.cient
L cavity length
l cavity aspect ratio\ l � L:H
m¾ j mass ~ux per unit width " j � c\ e#
Mj dimensionless mass ~ux per unit width " j � c\ e#
Nu Nusselt number de_ned by equation "17#
Pr Prandtl number de_ned by equation "1#
Pe Peclet number\ Pe � RePr
q¾j heat ~ux " j � c\ e#
Qj dimensionless heat ~ux " j � c\ e#
Re Reynolds number de_ned by equation "3#
Sc Schmidt number de_ned by equation "2#
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Sh Sherwood number de_ned by equation "18#
t time
Tj "absolute# temperatures of the walls " j � c\ e# ðKŁ
Uj velocities of the walls " j � c\ e#
u velocity ratio\ u � Uc:Ue

ux\ uy dimensionless velocity components
v constant dimensionless velocity de_ned by equation "31#
x\ y dimensionless coordinates
xd entrance length
xv virtual origin[

Greek symbols
a angle\ de_ning the orientation of the cavity
bv coe.cient of thermal expansion
G concentration parameter de_ned by equation "6#
k thermal di}usivity
l thermal conductivity
li eigenvalue
n kinematic viscosity
fi"y# eigenfunction
c streamfunction
r density of the gas mixture
s growth rate
n normalized temperature de_ned by equation "8#
v solvent vapor mass fraction
vj solvent vapor mass fraction on the walls " j � c\ e#
V vorticity[
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Subscripts
c cooled wall
e heated wall
i integer index
j index " j � c\ e#
x\ y vector components in x! and y!direction
9 steady con_guration of ~ow\ temperature and con!
centration _elds
0 perturbation quantity
09 amplitude of the perturbation quantity[

0[ Introduction

In drying technology detailed knowledge of the ~ow
and of the heat and mass transfer in the drying chamber
is essential for optimal operation of the equipment[ In
this paper\ a type of idealized direct condensation dryer
to be used for removing solvents from a thin liquid _lm
on a moving web is modeled as a shallow cavity with two
facing walls moving in their own planes and _lled with a
mixture of gas and solvent vapor[ Heat is supplied to one
moving wall in order to stimulate the evaporation of the
liquid solvent[ The other wall is cooled so that the solvent
vapor in the cavity should condense on it[ By moving the
cooled wall\ the condensed solvent can be removed from
the cavity[ The mass transport in the cavity is driven by
di}usion due to the di}erence between the solvent vapor
concentration near the heated and the cooled wall[ It is
in~uenced by convection induced by the motion of the
walls and by thermal and solutal density changes[ The
impact of buoyancy on the ~ow depends on the orien!
tation of the cavity in the gravity _eld\ which can either
oppose or support shear! and di}usion!induced convec!
tion[ Overall\ the driving mechanisms mentioned lead
to complicated ~ow patterns in the cavity and strongly
in~uence the heat and mass transfer rates "solvent evap!
oration rate# through the liquid _lm:gas interface in a
drying chamber[

This problem of ~ow with moving surfaces\
accompanied by heat and mass transfer\ belongs to the
family of lid!driven cavity problems already considered
in the literature[ However\ it appears that only ~ow in a
driven cavity accompanied by heat transfer has been stud!
ied thoroughly\ and work on ~ow with heat and mass
transfer problems has usually been focused on natural
convection in enclosed cavities with _xed walls[ A com!
prehensive understanding of the ~ow coupled with heat
and mass transport processes in lid!driven cavities is still
lacking[

A recent study by Kuhlmann et al[ ð0Ł\ devoted to two!
dimensional ~ow in a rectangular cavity with the two
short walls moving tangentially in opposite directions\
refers to the _rst group of lid!driven cavity problems[
In this paper multiple steady two!dimensional solutions
were found for aspect ratios L:H × 0[76\ with two co!

rotating vortices present in the cavity at low Reynolds
numbers[ With increasing Reynolds number the ~ow pat!
tern changes to a so!called cat|s eye ~ow via two turning
points eventually forming a single vortex ~ow at high
Reynolds numbers[

An early paper by Batchelor ð1Ł dealing with free con!
vection heat transfer in a slot with di}erentially heated
vertical walls was motivated by the application of double
windows and thermal insulation of buildings[ Di}erent
~ow regimes were identi_ed for limiting values of the
Rayleigh number and the aspect ratio of the slot by
asymptotic expansions for the solution of the governing
equations[ For a su.ciently tall cavity\ such that the ~ow
reaches fully developed conditions some distance away
from the end walls\ an aspect ratio was determined that
gives minimal heat transfer depending on the Rayleigh
number[ Boundary layer theory and a GraetzÐNusselt
procedure were applied in order to analyze the spreading
of the temperature boundary layer into the ~uid stream
driven by free convection\ and an estimate was given for
the distance from either end of the cavity at which fully
developed conditions are reached[

Iwatsu et al[ ð2Ł and Mohamad and Viskanta ð3Ł inves!
tigated mixed convection in a square and in a shallow
cavity with a stable vertical temperature gradient and
with a moving upper lid of the cavity[ Owing to the stable
strati_cation of the ~uid\ the recirculation ~ow driven by
the lid is con_ned to the upper region\ whereas in the
lower region heat transfer is dominated by conduction[
Multicellular ~ow regimes and transition to three!dimen!
sional ~ow were reported[

In a combined experimental and numerical study\
Mansour and Viskanta ð4Ł investigated mixed convection
~ow in a narrow vertical cavity\ where one vertical wall
is cooled and moves upwards\ such that the shear forces
induced by the wall motion oppose the buoyancy forces[
For this case a slender vortex "shear cell# is observed to
develop close to the moving wall while a buoyancy driven
vortex occupies the remaining part of the cavity[ The
heat transfer rate between the two vertical walls becomes
minimal when shear and buoyancy forces are of the same
order of magnitude^ it increases when either shear or
buoyancy ~ow becomes dominant[

Papers dealing with combined heat and mass transfer
focused on double di}usive natural convection in cavities
with _xed walls[ The work of Trevisan and Bejan ð5Ł and
of Bennacer and Gobin ð6\ 7Ł was concerned with heat
and mass transfer in tall vertical cavities[ From an analy!
sis of the boundary layer regime\ similarity solutions were
derived and shown to compare well with numerical cal!
culations over a wide range of parameters[

Dijkstra and Kranenborg ð8Ł reported a com!
prehensive numerical study of double di}usive con!
vection in a narrow slot with lateral temperature and
concentration gradients[ Using a continuation method\
the steady two!dimensional ~ow con_gurations were
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tracked in parameter space[ The location of bifurcation
points was detected and the linear stability of the solution
branches was determined[

Whereas the aforementioned studies assumed a van!
ishing mass average ~uid velocity at the walls\ thereby
neglecting an interaction of the ~ow _eld with the con!
centration gradients at the walls\ this interaction was
taken into account by appropriate boundary conditions
in the work of Weaver and Viskanta ð09Ł and of Ranga!
nathan and Viskanta ð00Ł[ In their work\ natural con!
vection due to horizontal thermal and solutal gradients and
the in~uence of di}usion on convection was considered[

In this work steady two!dimensional ~ow accompanied
by heat and mass transfer in a shallow lid!driven cavity
is investigated[ The coupling between the velocity _eld
and the concentration _eld at the evaporating or con!
densing wall is taken into account as well as buoyancy
e}ects due to temperature gradients in the bulk of the
~uid[ A numerical continuation method is applied in
order to trace the ~ow con_gurations in their dependence
on the parameters of the system and to detect con!
_guration multiplicities together with information on the
linear stability of these con_gurations[ Since\ in drying
applications\ stable operating conditions with high mass
transfer rates are desired\ the in~uence of various oper!
ation parameters such as the Reynolds number\ the rela!
tive velocities of the walls\ and the buoyancy forces
"Grashof number# on the heat and mass transfer rates is
investigated here for several orientations of the cavity in
the gravity _eld[ For high di}erences in solvent con!
centration and low Reynolds numbers\ a strong in~uence
of convection induced by di}usion on the ~ow patterns
is found[ Depending on the orientation of the cavity\
operation points with minimal heat and mass transfer as
well as operation regimes with multiple ~ow con!
_gurations were detected in parameter space[

1[ Problem formulation

A closed cavity with no through ~ow of height H and
length L "see Fig[ 0# _lled with an ideal binary mixture

Fig[ 0[ Lid driven cavity\ ` � `"cos a ex¦sin a ey#[

of a solvent vapor and a non!condensable gas is
considered[ The heated wall\ moving at velocity Ue\ is
kept at constant temperature Te[ It will be assumed that
adjacent to the wall the solvent vapor mass fraction ve is
also constant\ corresponding to the equilibrium satu!
ration[ For the cooled wall constant values of Tc\ vc

and Uc are assumed similarly[ The other two walls are
considered adiabatic and impermeable[ The ~uid is
treated as an incompressible\ Newtonian ~uid[ Its density
changes with temperature are taken into account by the
Boussinesq approximation[ Thermal di}usion "Dufour
e}ect# and di}usion thermo "Soret e}ect# will not be
considered[ Finally\ it will be assumed that the molar
masses of the solvent and gas as well as their speci_c
heats are equal\ so that there is no density change with
concentration and no interdi}usion e}ect[

Dimensionless quantities are introduced by scaling the
lengths with the cavity height H and the velocities with
the velocity of the heated wall Ue[ The shape of the cavity
is described by its aspect ratio

l � L:H "0#

its orientation in the gravity _eld by the angle a "see
Fig[ 0#[ The physical properties of the ~uid are char!
acterized by the Prandtl number]

Pr �
n

k
"1#

and the Schmidt number]

Sc �
n

D
"2#

de_ned in terms of the kinematic viscosity n\ the thermal
di}usivity k and the di}usion coe.cient D[ The operation
of the cavity is de_ned by a Reynolds number

Re �
UeH

n
"3#

the velocity ratio

u � Uc:Ue "4#

and the Grashof number
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Gr �
`H2bv"Te−Tc#

n1
"5#

where ` denotes the gravitational acceleration and bv the
coe.cient of thermal expansion[ Gr can be viewed as a
measure of the temperature di}erence as long as bv � 9[
Alternatively\ it may be viewed as a measure of buoyancy
in~uence[ An additional parameter\

G �
0−ve

ve−vc

"6#

characterizes the concentration di}erence between the
heated "subscript e# and cooled "subscript c# wall ð09\
00Ł[

With a streamfunctionÐvorticity approach for the two!
dimensional velocity _eld\

ux �
1c

1y
\ uy � −

1c

1x
"7#

and with normalized temperature and concentration
_elds

n �
T−Tc

Te−Tc

\ C �
v−vc

ve−vc

"8#

the non!dimensional governing equations are given by
ð00\ 01Ł]

+ streamfunction equation]

Dc � V "09#

+ vorticity transport]

1c

1y
1V
1x

−
1c

1x
1V
1y

�
0
Re

DV−
Gr

Re10`x

1n

1y
−`y

1n

1x1 "00#

+ heat transport]

1c

1y
1n

1x
−

1c

1x
n

1y
�

0
RePr

Dy "01#

+ species mass transport]

1c

1y
1C
1x

−
1c

1x
1C
1y

�
0

ReSc
DC[ "02#

The boundary conditions are as follows] on the heated
wall

n"x\ 9# � 0 "03#

C"x\ 9# � 0 "04#

1c

1y
"x\ 9# � 0 "05#

1c

1x
"x\ 9# �

0
ReSc

0
G

1C
1y

"x\ 9# "06#

and on the cooled wall

q"x\ 0# � 9\ "07#

C"x\ 0# � 9\ "08#

1c

1y
"x\ 0# � u\ "19#

1c

1x
"x\ 0# �

0
ReSc

0
0¦G

1C
1y

"x\ 0#[ "10#

Conditions "06# and "10#\ also known as EckertÐ
Schneider boundary conditions ð02Ł\ couple the ~ow with
di}usion[ On the adiabatic and impermeable walls the
conditions

1n

1x
"9\ y# �

1n

1x
"l\ y# � 9 "11#

1C
1x

"9\ y# �
1C
1x

"l\ y# � 9 "12#

hold for temperature and concentration[ For the stream!
function

c"9\ y# � 9 "13#

1c

1x
"9\ y# � 9 "14#

is set on one of these walls and

c"l\ y# �
0

ReSc g
l

9

0
G

1C
1y

"x?\ 9# dx? "15#

1c

1x
"l\ y# � 9 "16#

on the other[ From the streamfunction equation "09# and
from the conditions "05#\ "19#\ "14# and "16# at the four
walls the boundary conditions for the vorticity are
obtained ð03Ł[

Owing to the feedback of di}usion on the ~ow\ the
local heat and mass transfer coe.cients h and kv\ ex!
pressed by local Nusselt and Sherwood numbers

Nuj"x# �
hH
l

� −
1y

1y bj " j � c\ e# "17#

and

Shj"x# �
kvH
D

� −
1C
1y bj " j � c\ e# "18#

respectively\ depend on the mass transfer rate ð04Ł[ Their
average values are de_ned by

Nuj �
0
l g

l

9

Nuj"x# dx "29#

and

Shj �
0
l g

l

9

Shj"x# dx "20#

respectively[
The dimensionless mass ~ux "per unit width# through

the interfaces c and e for the unidirectional vapor
di}usion is given by

Me �
m¾ e

rD:H
�

0
G

She "21#

and
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Mc �
m¾ c

rD:H
�

0
0¦G

Shc[ "22#

Since the other two walls are assumed to be impermeable\
the global mass balance requires that

Mc � Me[ "23#

Because of the EckertÐSchneider boundary conditions
"06# and "10#\ a bulk ~ow contribution has to be added
to the conductive heat ~ux Nuj to give the total dimen!
sionless heat ~ux through the walls]

Qþj �
q¾ j

l"Te−Tc#H
� Nuj¦

Pr
Sc

njMj[ "24#

The global energy balance for the cavity is given by

Nuc � Nue¦
Pr
Sc

Me[ "25#

2[ Numerical solution

The governing equations were discretized using a
second!order _nite di}erence scheme based upon an
implementation of Alleborn et al[ ð01\ 05Ł[ The mesh was
locally re_ned near the walls in order to resolve the wall
boundary layers[ An arc!length predictorÐcorrector con!
tinuation method by Allgower and Georg ð06Ł was
applied in order to track the solutions in dependence on
the parameters and to detect turning points and simple
bifurcation points[ The numerical calculations were per!
formed on a 049×29\ a 049×59 and a 299×59 mesh[
The global mass and energy balances "23# and "25#\
respectively\ served as indicators for the numerical accu!
racy achieved[ On the _nest grid "299×59 points# the
relative error for both mass and energy balance was below
9[94) in the range of parameters investigated[ The
di}erences of both averaged Nusselt and Sherwood num!
bers between the two _nest grids was well below 9[4)[
Furthermore\ the results of this algorithm were compared
with the results of Mansour and Viskanta ð4Ł for laminar
~ow in a shallow cavity with aspect ratio l � 5 and with
the results of Ranganathan and Viskanta ð00Ł for natural
convection with mass transfer in a square cavity[ For
both cases the relative deviation of our numerical results
was less than 2)[

For the computed steady con_gurations of ~ow\ tem!
perature and concentration _elds "c9\ V9\ n9\ C9# "x\ y#\
the linear stability with respect to two!dimensional dis!
turbances "c0\ V0\ n0\ C0# "t\ x\ y# was determined[ The
governing equations for the perturbed ~ow

c½ "t\ x\ y# � c9"x\ y#¦c0"t\ x\ y# "26#

V	"t\ x\ y# � V9"x\ y#¦V0"t\ x\ y# "27#

n½"t\ x\ y# � n9"x\ y#¦n0"t\ x\ y# "28#

C	"t\ x\ y# � C9"x\ y#¦C0"t\ x\ y# "39#

were linearized with respect to the perturbation quantities
and solved by a normal mode decomposition

"c0\ V0\ n0\ C0#"t\ x\ y# �"c09\ V09\ n09\ C09#"x\ y#est

"30#

with a complex growth rate s[ The generalized algebraic
eigenvalue problem for s resulting from discretization
was solved with the package ARPACK ð07Ł[ Both con!
tinuation method and linear stability analysis had already
been used in previous work ð01Ł[ Figure 1 shows as an
illustration the grid dependence of the dominant part of
the spectrum for a particular parameter con_guration at
Re � 0999[ The right!most eigenvalues are situated in the
left half of the complex plane\ i[e[ small perturbations
decay with time and the basic ~ow is stable[ To a good
approximation this part of the spectrum is independent
of the grid size[ Owing to the increase in the number of
degrees of freedom with increasing number of grid points\
the inner part of the spectrum changes with grid re_ne!
ment\ as expected[

3[ Limiting cases

3[0[ One!dimensional model

In the limiting case of an in_nitely long cavity\ l :
�\ and with negligible buoyancy forces\ an analytical
solution can be obtained for fully developed ~ow ð02Ł[
From conservation of mass and from the EckertÐ
Schneider boundary conditions "06#\ a constant velocity
component in the y!direction follows]

v �
0

ReSc
log

0¦G
G

[ "31#

In terms of the constant vertical velocity v\ the con!
centration pro_le is given by

C"y# �
evRe Sc−evRe Sc y

evRe Sc−0
[ "32#

The corresponding temperature pro_le can be obtained
from equation "32# by replacing C by n and Sc by Pr[

In Fig[ 2\ the analytical concentration pro_le for l :
� is compared with the numerical pro_les in the middle
"x � 1[4# of a cavity of _nite length "l � 4#\ for low Rey!
nolds number and for di}erent values of G[ For low Re\
Pr and Sc\ the ~ow in a _nite cavity can be considered
fully developed already close to the end walls in cavities
with _nite length[ In this region good agreement between
the two!dimensional simulation and the analytical solu!
tion is found[

Figure 3 shows in detail the numerical solution for a
cavity with _nite length l � 4 and the upper and lower
wall moving in opposite directions "u � −0# at Re � 09\
referred to in Fig[ 2[ Buoyancy was neglected in this
calculation "Gr � 9#[ For low Reynolds numbers and
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Fig[ 1[ Grid dependence of the right!most eigenvalues of the spectrum for l � 4\ Pr � 9[74\ Sc � 9[45\ Re � 0999\ Gr � 9\ u � −0\
G � 9[223[

Fig[ 2[ Concentration pro_les in the drying chamber at x � 1[4 for l � 4 at Re � 09\ Sc � 9[45 "Pr � 9[74\ Gr � 9 and u � −0#]
×numerical results\ * analytical solution[

high concentration gradients\ the ~uid motion is strongly
in~uenced by di}usion!induced convection[ The con!
vection cell which would occupy the whole cavity if the
di}usion ~ux were negligibly small is squeezed into the
left part of the cavity by the strong mass ~ux from the
heated "evaporating# to the cooled "condensing# wall "see
Fig[ 3#[ The temperature and concentration contour lines
are approximately horizontal in the mid!part of the cavity
and slightly distorted by convection near the adiabatic
end walls[ In Fig[ 3 the local Nusselt numbers for the
one!dimensional analytical model are plotted together
with the numerical results\ showing the region in the
cavity with fully developed ~ow[

With increasing Reynolds number\ the shear!induced
~uid motion becomes dominant and the recirculation cell
increases in size\ occupying the central part of the cavity
"Fig[ 4#[ Even at higher Reynolds numbers\ however\
the in~uence of di}usion!induced convection distorts the
shape of the recirculation cell which would have a perfect
central symmetry in the absence of di}usion[

In the core of the convection cell the temperature and
concentration are approximately constant[ Close to the
moving lids boundary layers of temperature and con!
centration develop in the direction of the wall motion[
Batchelor ð1Ł used the GraetzÐNusselt procedure to ana!
lyze the spreading of the thermal boundary layer in the
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Fig[ 3[ Local Nusselt numbers "a#\ streamlines "b# and concentration contours "c# for l � 4\ Re � 09\ Pr � 9[74\ Sc � 9[45\ u � −0\
Gr � 9\ G � 9[223[

Fig[ 4[ Local Nusselt and Sherwood numbers "a#\ streamlines "b# and concentration contours "c# for Re � 499\ u � −0\ Gr � 9\
G � 9[223[
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case of free convection in a vertical slot[ In the following
section the method will be adapted to solve the GraetzÐ
Nusselt problem for forced convection ~ow in the driven
cavity[

3[1[ Thermal boundary layer

The ~ow pro_le in a long\ shallow cavity with its long
walls moving in opposite directions "u � −0# can be
described approximately by a fully developed Couette
pro_le some distance away from the end walls[ At high
Reynolds numbers and for moderate and high Prandtl
numbers thin thermal boundary layers develop along the
moving walls while the ~uid in the core of the cavity
is nearly isothermal[ The temperature boundary layer
equation for a Couette pro_le

"0−1y#
1n

1x
�

0
RePr

11n

1y1
"33#

is solved for the temperature boundary condition at the
lower moving wall

n"x\ 9# � 0 "34#

and constant temperature at the horizontal centerline of
the cavity

n"x\ 0:1# �
0
1

[ "35#

At x � 9 a constant temperature

n"9\ y# �
0
1

"36#

will be assumed as well[
The problem is solved by separation of variables^ the

general solution is given by

n"x\ y# �"0−y#¦ s
�

i�0

ai e−
li

1Pe
xfi"y#\ "37#

with Peclet number Pe � RePr[ The functions fi"y# form
a complete set of orthonormal functions which are
obtained from a power series solution of the SturmÐ
Liouville problem resulting from the separation ansatz
for equation "33#[ The corresponding eigenvalues li are
determined form the boundary conditions "34# and "35#[
Approximations for the _rst ten eigenpairs "li\ fi"y## are
obtained by the computer algebra program MAPLE\ the
_rst _ve eigenvalues are determined as

li ¼ 040[54\ 544[98\ 0402[66\ 1616[63\ 3186[90\ [ [ [ "38#

The coe.cients ai in equation "37# are obtained from the
initial condition "36# by orthogonal projection[ For x :
� the solution "37# tends asymptotically to the linear
temperature pro_le of the fully developed solution[ The
rate at which the deviation of the fully developed pro_le
decreases with x will be asymptotically determined by the
_rst term "i � 0# of the series expansion in equation "37#
ð1Ł[ The distance for which this term decreases to 09) of

its initial value gives a rough estimate of the distance xd

from the vertical end walls for which ~ow and tem!
perature _elds can be considered fully developed]

xd ¼
Pe
22

[ "49#

In Fig[ 5\ the local Nusselt numbers obtained from a
numerical solution for a cavity with parameters l � 09\
Re � 2999\ Pr � 1\ Gr � 9\ without mass transfer\ are
compared with the analytical approximation

Nuanalyt � 0− s
09

i�0

ai e−
li

1Pe
xf?i"9# "40#

for Pe � 5999[
In the _rst case "dotted line in Fig[ 5#\ the initial con!

dition "36# is used[ Since the ~ow driven by the lids is
turned around by the vertical end walls and reaches into
the core of the cavity\ the assumption of constant tem!
perature in equation "36# appears not to be a very good
approximation of the temperature pro_le near the end
walls[ However\ since the rate at which the temperature
pro_le reaches the linear pro_le as x increases is deter!
mined very soon only by the _rst term in equation "37#\
the particular shape of the temperature pro_le at x � 9
very rapidly becomes unimportant with growing x[
Therefore\ the analytical solution for the local Nusselt
number for constant initial condition can be reasonably
_tted to the numerical result by shifting it by a constant
length xv\ which is similar in concept to the virtual origin
of a Bickley jet ð02Ł[ Figure 5 shows that the rate at which
the Nusselt numbers decreases with x compares well with
the numerically obtained results[ Even better agreement
for the asymptotic behavior of Nu was obtained by using
a numerically obtained temperature pro_le near the left
end wall "x � 9[58# instead of equation "36# as an initial
condition "dashed line in Fig[ 5#[

4[ Numerical study

In the general case of a _nite cavity length and arbitrary
operation parameters\ a numerical simulation of the
transport processes is necessary[ In this paper a cavity
with aspect ratio l � 4 is considered[ For the solvent
vapor:gas mixture the Prandtl and Schmidt numbers

Pr � 9[74 "41#

Sc � 9[45 "42#

were chosen[
Four di}erent orientations of the cavity in the gravity

_eld were selected for the parameter study]

"i# vertical cavity with the heated wall moving upwards
"g � −`ex\ a � 079>#^

"ii# vertical cavity with the heated wall moving down!
wards "g � ¦`ex\ a � 9>#^
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Fig[ 5[ Local Nusselt number Nu vs x[ "a# Numerical solution "Pe � 5999\ l � 09#^ "b# GraetzÐNusselt solution with constant initial
temperature n"9\ y# � 0:1\ virtual origin] x : x−xv^ "c# GraetzÐNusselt solution\ numerically obtained pro_le "Pe � 5999# at xn � 9[58
as initial condition n"xn\ y#[

"iii# horizontal cavity with heated lower lid "g � −`ey\
a � 169>#^

"iv# horizontal cavity with heated upper lid "g � ¦`ey\
a � 89>#[

4[0[ In~uence of the Reynolds number

The dependence of heat and mass transport on the
Reynolds number is shown in Fig[ 6"a# and "b# in terms
of average Nusselt and Sherwood numbers for the walls
moving in opposite directions "u � −0#[ The calculations
were performed for four cavity orientations\ with a con!
centration parameter G � 9[223\ corresponding to satu!
ration mass fractions of water vapor "0 bar# at Te � 257
K and Tc � 182 K\ and with G � 0[148\ corresponding
to saturation at Te � 247 K and Tc � 182 K[ Figure 6"b#
shows a drastic increase of the mass transfer with an
increase of about 09 K in the evaporation temperature\
but a qualitatively similar behavior of the heat and mass
transfer rate with the remaining operation parameters for
both G � 9[223 and G � 0[148[

The results show that for Re × 249\ heat and mass
transfer is dominated by convection driven by the moving
lids[ Buoyancy forces have practically no in~uence on the
heat and mass transfer rate\ so that the Nusselt and
Sherwood numbers do not depend signi_cantly on the
orientation of the cavity "cases "i#Ð"iv##[ The typical ~ow
pattern in this range of Reynolds numbers is a single
vortex[ In conjunction with it\ temperature and con!
centration boundary layers develop near the lids whereas
the core of this vortex is almost isothermal and with
constant vapour concentration "Fig[ 4#[

At Re ³ 249 there is a regime of mixed convection
where viscous forces and buoyancy forces are competing[
In Fig[ 7 a magni_cation of the range of Reynolds num!
bers covering the mixed convection regime is plotted for
Gr � 6674 and G � 9[223[ The extreme heat and mass
transfer rates are attained here for a vertical cavity] the
highest rates with the heated lid moving upwards "case
"i#\ a � 079>\ solid line#\ and the lowest ones for the
heated lid moving downwards "case "ii#\ a � 9>\ dot!
dashed line in Fig[ 7#[

For case "i#\ with upward!moving heated lid the buoy!
ancy forces in the ~uid act in the same direction as the
shear forces of the moving walls[ Hence the convective
transport of solvent vapor from the heated wall to the
cooled wall is enhanced\ resulting in the higher heat and
mass transfer rates[

When\ in contrast\ the heated lid moves downwards
"case "ii##\ the buoyancy forces oppose the shear forces\
thus increasing the thicknesses of the temperature and
concentration boundary layers and decreasing the heat
and mass transfer rates[

Figure 8"a# and "b# compares the streamlines and con!
tour lines of concentration of these two cases at Re � 049[
In addition\ Fig[ 09 shows for these two cases the velocity
and concentration pro_les across the cavity at x � 1[4[
They con_rm the smaller velocities in the cavity for
opposing buoyancy and shear[ Owing to the decelerating
action of the buoyancy forces\ the center of the recir!
culation zone is shifted in case "ii# to the upper end of
the cavity whereas in the core of the cavity the ~uid is
moving slowly "see Fig[ 8 and dashed line in Fig[ 09#\
so that heat and mass transport are dominated here by
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Fig[ 6[ In~uence of the Reynolds number and the orientation of the cavity on heat and mass transfer for l � 4\ Pr � 9[74\ Sc � 9[45\
u � −0] "a# heat ~ux] average Nusselt number\ "b# mass ~ux] average Sherwood number[

di}usion[ With concurring buoyancy and shear\ con!
centration gradients at the walls are signi_cantly steeper
"Fig[ 09#\ so that heat and mass transport in case "i# take
place dominantly in the boundary layers[

When the Reynolds number is decreased still further
below Re � 049\ the heat and mass transfer rates decrease
in a simple monotonic way in case "i# whereas in case "ii#
the dependence of the Nusselt and Sherwood numbers
on the Reynolds number displays a more complicated
behavior[ A threefold ~ow con_guration appears here\
that lies for G � 9[223 between Re � 83[58 and
Re � 85[67\ and is limited in the diagram of Fig[ 7 by two
turning points[ The ~ow con_guration corresponding to

the branch between the two turning points turns out to
be unstable[ It exhibits two additional vortices\ compared
to the stable ~ows above the turning point at Re � 83[58
"Fig[ 00"a##\ and is qualitatively similar to the ~ow con!
_guration at the turning point at Re � 85[67 "Fig[ 00"b##[
For G � 0[148 this region of threefold ~ow con!
_gurations is located between Re � 66[15 and 72[23\
respectively[

At Re ¼ 59\ buoyancy forces and viscous forces
counteract each other in such a way as to produce a ~ow
"Fig[ 01# with minimal heat and mass transfer rates "cf[
Fig[ 6"a# and "b##[ On decreasing the Reynolds number
still further\ the buoyancy forces eventually dominate the
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Fig[ 7[ Heat ~ux "dimensionless# vs Reynolds number] magni_ed plot of mixed convection regime for Gr � 6674\ G � 9[223\ l � 4\
Pr � 9[74\ Sc � 9[45\ u � −0[

Fig[ 8[ Streamlines and concentration contours for Gr � 6674\ l � 4\ Re � 049\ Pr � 9[74\ Sc � 9[45\ u � −0\ G � 9[223] "a# a � 079>\
heated wall moving upwards "b# a � 9>\ heated wall moving downwards[
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Fig[ 09[ Velocity pro_le "u!component\ upper diagram# and concentration pro_le "lower diagram# at x � 1[4\ for Gr � 6674\ l � 4\
Re � 049\ Pr � 9[74\ Sc � 9[45\ u � −0\ G � 9[223[

~ow and produce a ~ow pattern as shown in Fig[ 02[ In
this ~ow the vortex rotates clockwise\ opposite to the
anti!clockwise rotation of the vortices in Figs 4 and 8[
The heat and mass transfer rates increase again and reach
the rates of case "i# in the limit Re : 9 of _xed walls[

For the horizontal cavities the values of the heat and
mass transfer rates lie between those for vertical cavities[
For a stable strati_cation of the vapor:gas mixture\ i[e[
for the lower wall cooled and the upper wall heated
"a � 89>#\ lighter ~uid tends to oppose at low Reynolds
numbers the convection down to the cool wall[ Therefore\
the vortex appears con_ned to a narrow region close
to the upper wall "Fig[ 03#[ With decreasing Reynolds

number a second vortex develops in the cold\ heavy ~uid
layer near the bottom lid[ In the limit Re : 9\ heat and
mass transfer become mainly driven by di}usion!induced
convection[

For an unstable strati_cation\ with the cooled lid
located above the heated one "a � 169>#\ the buoyancy
forces support the convective transport of the ~uid away
from the moving lids[ With decreasing Reynolds number
the buoyancy forces gain dominance over the shear!
driven ~ow[ As a consequence\ at Re ¼ 32 the single
vortex ~ow of the forced convection regime "Fig[ 4# starts
to divide into two anti!clockwise rotating vortices[ At
Re � 29[905 this steady two!dimensional ~ow pattern
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Fig[ 00[ Streamlines and concentration contours at critical points for Gr � 6674\ a � 9>\ u � −0\ G � 9[223] "a# _rst turning point at
Re � 83[58\ "b# second turning point at Re � 85[67[

Fig[ 01[ Minimal heat and mass transfer at Re � 59 for Gr � 6674\ a � 9>\ u � −0\ G � 9[223[

"Fig[ 04# becomes unstable with respect to two!dimen!
sional disturbances by a Hopf bifurcation and transient
behavior sets in[ This transition is shown by the rightmost

part of the spectrum of linear stability at the bifurcation
point Re � 29[905 in Fig[ 05[ A pair of complex conjugate
eigenvalues crosses from the left to the right half of the
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Fig[ 02[ Buoyancy dominated ~ow\ shown for Re � 4\ Gr � 6674\ a � 9>\ u � −0\ G � 9[223[

Fig[ 03[ Streamlines for a horizontal cavity\ stable strati_cation[ "a# Re � 29\ "b# Re � 19\ "c# Re � 09\ for l � 4\ Pr � 9[74\ Sc � 9[45\
Gr � 6674\ a � 89>\ u � −0[

Fig[ 04[ Horizontal cavity\ streamlines and concentration contours at Re � 29[905 "Hopf point# for l � 4\ Pr � 9[74\ Sc � 9[45\
Gr � 6674\ a � 169>\ u � −0\ G � 9[223[
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Fig[ 05[ Hopf bifurcation] right!most eigenvalues of the stability spectrum for Re � 29[905\ l � 4\ Pr � 9[74\ Sc � 9[45\ Gr � 6674\
u � −0\ G � 9[223[

complex plane[ Close to the Hopf bifurcation point the
transient ~ow is periodic with an angular frequency
I"s# ¼ 9[12[

4[1[ In~uence of the velocity ratio u

When the cavity is operated in the forced convection
regime at a _xed Reynolds number\ the relative velocity
of the moving lids can strongly in~uence the heat and
mass transport[ Figure 06"a# and "b# shows for Re � 499
that the heat and mass transfer rates decrease drastically
when the relative velocity of the condensing wall is chan!
ged from u � −0 to u � 0[ This decrease is most pro!
nounced in the range of a relatively slowly moving cooled
lid "−9[4³ u ³ 9[4# where also slight in~uence of the
buoyancy force can be observed[ Similarly to the _ndings
in the previous section\ the qualitative behavior of the
heat and mass transfer with the velocity ratio u and cavity
orientation in the gravity _eld does not depend on the
concentration level G[

Figures 4 and 07"a#Ð" f# show the change of the ~ow
and concentration _eld for G � 9[223 when the velocity
ratio u changes from −0 to 0[ When the velocity of the
cooled lid "upper lid in the _gures# is decreased from
u � −0 to u � −9[4 "Fig[ 07"a##\ the ~uid accelerated
by the faster heated lid "lower lid in the _gures#\ is deceler!
ated by the slower motion of the cooled lid[ The center
of the core vortex is shifted from the left to the middle of
the cavity and hot ~uid\ rich in solvent\ reaches deeper
into the core[ With a further decrease in the speed of the
cooled wall\ separation occurs on the upper wall\ with
the consequence that the recirculation zone in the cavity
decreases in size and two new vortices develop as u tends
to zero "Fig[ 07"b# and "c##[ Outside the major vortex the
~uid velocity is so small that the heat and mass transport

is driven mainly by di}usion and does not contribute
much to the total heat and mass transfer[ Therefore\ the
onset of separation on the cooled wall explains the steep
decrease of the heat and mass transfer rates for u × −9[4[

Motion of the cooled lid in the direction of the heated
lid leads to the development of a complex ~ow pattern]
in the upper and lower halves of the cavity there appear
arrays of co!rotating vortices "Fig[ 07"d#Ð" f##[ Thereby\
the upper vortex array rotates oppositely to the lower
array[ Between them a narrow ~uid jet undulates in a
~ow opposed to the motion of the walls[ Owing to the
convective mixing produced by the vortices\ the tem!
perature and concentration gradients near the moving
walls are leveled and lead to lower heat and mass transfer
rates compared with the ~ow with oppositely moving
walls[ For u ¼ 9[5 shallow minima are reached by the
heat and mass transfer rates\ followed by a slow increase
at u × 9[5 "Fig[ 06#\ when the cooled wall moves fast
enough to build up a thin boundary layer over its entire
length "Fig[ 07" f##[

It is instructive to trace the path of a ~uid element of
the vapor:gas mixture from the evaporation wall to the
condensation wall] Solvent vapor emerging from the
heated lid _rst di}uses into a ~uid element close to it\
thereby increasing its mass fraction of solvent vapor[ For
u × 9 this ~uid element is transported typically on an S!
shaped trajectory that passes through the undulating ~uid
stream in the middle of the cavity "see Fig[ 07"d#Ð" f## to
the cool wall where its vapor content condenses[ On this
way the ~uid element loses part of its vapor content by
di}usion[ For u ³ 9\ on the contrary\ the typical tra!
jectory of a ~uid element is considerably shorter\ because
after its _rst turn near the right end wall it arrives very
close to the cool wall\ keeping its high solvent vapor
concentration "see Fig[ 4#[ Therefore\ approximately
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Fig[ 06[ In~uence of the velocity ratio u and the orientation of the cavity on heat and mass transfer for Re � 499\ l � 4\ Pr � 9[74\
Sc � 9[45] "a# heat ~ux] average Nusselt number\ "b# mass ~ux] average Sherwood number[

twice as much solvent vapor is transported here to the
cooled wall and condenses there\ leading to considerably
higher heat and mass transfer rates[

When the cooled wall moves in the opposite direction
and faster than the heated wall "u ³ −0#\ the heat and
mass transfer rates "Fig[ 06"a# and "b## increase slightly
and reach a local maximum "around u � −0[5 for
G � 9[223#[ The ~ow pattern at this maximum "Fig[
08"a## is similar to that shown in Fig[ 4 for u � −0\ but
the temperature and concentration in the core of the
vortex are lower for the faster moving cooled wall[ Fur!
thermore\ the cold ~uid that is turned around at the left
end wall has a higher momentum when it impinges on
the heated wall[ This results in locally thinner tem!

perature and concentration boundary layers and leads to
higher local heat and mass transfer rates[

When the velocity of the cooled belt is further
increased\ ~ow separation occurs for u ³ −0[5 on the
slower heated wall and in~uences the overall heat and
mass transfer rates[ The size of the core vortex decreases
and its center shifts towards the left end wall "cf[ Fig[
08"b##[ The temperature and concentration in the vortex
are almost constant and very close to their values right
on the cooled wall[ Therefore\ cold ~uid is convected
close to the heated wall and heat and mass transfer are
enhanced here[ Outside the vortex\ beyond the separation
point\ the ~uid velocity is comparatively small\ leading
to considerably lower local heat and mass transfer rates
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on the heated lid than for u ¼ −0[5[ Because of the size
of this zone compared to the vortex\ the average heat and
mass transfer rates are decreased signi_cantly[

For the situation of a faster moving cooled wall the
heat and mass transfer rates show some dependence on
the orientation of the cavity in the gravity _eld\ similar

Fig[ 07[ In~uence of the velocity ratio u on ~ow and concentration _eld for l � 4\ Re � 499\ Pr � 9[74\ Sc � 9[45\ Gr � 9\ G � 9[223]
"a# u � −9[4\ "b# u � −9[1\ "c# u � 9\ "d# u � 9[1\ "e# u � 9[4\ " f# u � 0[

to a slower moving cooled wall\ because in the zones of
slow ~uid motion\ outside the core vortex\ buoyancy
forces gain a noticeable in~uence compared with the
shear forces[ Figure 06"a# and "b# displays this^ again\
the e}ect is most pronounced for vertical cavities\ for the
same reasons as described in Section 4[0[
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Fig[ 07[ Continued[

The location of the local maximum for heat and mass
transfer depends on the concentration parameter G[ With
increasing G\ i[e[ with decreasing concentration di}erence
between the heated and cooled walls\ the location of this
maximum moves in the negative direction of u\ to higher
velocities of the cooled wall "see Fig[ 06#] for G : � "i[e[
Dv : 9# it reaches um ¼ −1[04[

The reason for this behavior comes from the in~uence

of the evaporation mass ~ux through the heated wall on
the onset of ~ow separation at this wall when u ³ −0[5[
Such an e}ect has already been described in the context
of boundary layer control by blowing or suction ð02Ł[
With increasing evaporation mass ~ux the ~uid layers
close to this wall are increasingly decelerated by the
momentum of this ~ux\ causing the separation point to
move upstream\ to smaller values of x[ Therefore\ with
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Fig[ 08[ In~uence of the velocity ratio u on ~ow and concentration _eld for faster moving cooled wall "l � 4\ Re � 499\ Pr � 9[74\
Sc � 9[45\ Gr � 9\ G � 9[223#] "a# u � −0[44\ "b# u � −1[4[

increasing evaporation rate\ separation sets in at lower
velocities of the cooled wall and shifts the location of the
maximal heat and mass transfer rates towards u � −0[

4[2[ In~uence of the concentration boundary condition

Of particular importance in drying applications is the
in~uence of the boundary condition for the species mass
fraction on heat and mass transfer[ Since in this paper
saturation values of the solvent vapor at the heated and
cooled walls are assumed\ the concentration parameter is
essentially a complicated function of the "absolute# wall
temperatures[ Therefore\ it is appropriate to plot the mass
~ux per unit width through the interfaces "equations "21#
and "22## against the wall temperatures Tc and Te rather
than G[ For an illustration of the e}ect of the con!
centration boundary condition\ the particular system of
water vapor in air at a pressure of 0 bar was chosen[

Figure 19 shows the change in the dimensionless mass
~ux per unit width with the condensation temperature Tc

when the evaporation temperature Te is kept constant[
Results for a cavity of aspect ratio l � 4 are compared
with

Mc � log
0¦G

G
"43#

from Section 3[0 for an in_nitely long cavity "l : �# with
fully developed ~ow[

When Tc is increased from low values\ the mass transfer
rate does not change signi_cantly over a wide range of
temperatures[ Only when the condensation temperature
comes close to the evaporation temperature Te does the
mass transfer drop drastically and vanish in the limit
Tc : Te[ This results essentially from the exponential
relationship between the saturation concentration and
the wall temperature\ which also implies that changes
in the evaporation temperature do have a considerably
stronger in~uence on the mass transfer in comparison[
For a water vapor:air mixture a decrease of Te by 09 K
from 257 to 247 K results\ e[g[\ in a mass ~ux decrease
by a factor × 1[

Figure 19 also indicates that the mass transfer rate per
unit width decreases with increasing aspect ratio l of the
cavity[ For the relatively short cavity with l � 4\ the mass
transfer rate turns out to be about _ve times higher than
that for the in_nitely long cavity[ The reason for the
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Fig[ 19[ Evaporation and condensation of water in the cavity] in~uence of the absolute wall temperatures Te and Tc on the mass
transfer\ plotted in terms of the dimensionless mass ~ux Mc vs Tc for Re � 499\ u � −0\ Gr � 9\ Pr � 9[74\ Sc � 9[45 and various
cavity lengths and temperatures Te[

smaller average transfer rates for long cavities lies in an
increase in the temperature and concentration boundary
layer thicknesses in the direction of motion[ According
to equation "49#\ the estimated entrance length for the
temperature pro_le is xd ¼ 04 of the operation par!
ameters used in Fig[ 19[ In the region xd ³ x ³ l−xd of
a long cavity\ the ~ow can be considered fully developed
and heat and mass transfer are dominated by di}usion\
with the asymptotic rates of an in_nite cavity[

5[ Conclusions

Heat and mass transfer in a lid driven cavity have been
investigated in this paper with a motivation coming from
process engineering\ related to modeling a type of drying
chamber[ The results imply\ when described in terms of
equipment operation\ information\ obtained by a sys!
tematic numerical study\ on ranges of stable operation
with high heat and mass transfer rates\ i[e[ with high
drying rates[ It has been shown that the drying rates
are enhanced by increasing web velocity and become
increasingly independent of the cavity orientation
because of dominance of forced convection[ When the
Reynolds number\ as a measure of web velocity\ is
decreased to small values\ instabilities due to buoyancy
e}ects occur] for a vertical cavity with a downward!mov!
ing heated web they are characterized by two turning
points\ whereas for a horizontal cavity with a thermally
unstable con_guration by the occurrence of a Hopf bifur!
cation[ When the velocity of the condensing wall is
decreased with respect to that of the web\ ~ow separation

occurs on this wall and leads to a drastic reduction of
the drying rate because separation reduces convection!
enhancement of heat and mass transport to only a small
section of the cavity[ With increasing cavity length\ the
mean mass transfer rate per unit length decreases\ due to
an increase in thickness of a boundary layer that develops
in the cavity[ An increase of the evaporation temperature
increases the mass transfer very e.ciently\ whereas the
condensation temperature can be chosen in a wide range\
relatively close to the evaporation temperature\ without
a signi_cant loss in the drying rate[
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